ケーブル技術スタッフの機器チェック!

日々開発されるケーブルテレビ関連機器などを、実際に検証 しながらチェック! 実用性に焦点をあてて報告します。

164

ローパスフィルタ(LPF)の特性<2>

ケーブルテレビ アーキテクト 上山裕史 今号はガウス、リニアフェーズのLPF伝送特性について紹介します。

ケーブルテレビ局の技術者は、プラ イマリーIP電話やインターネットなどミッ ションクリティカルな双方向アプリケー ションに加え、コミュニティチャンネル(コ ミチャン) 放送のためのデジタル放送機 器の安定動作に目を光らせています。 10月号でバターワース、チェビシフ、 ベッセル特性のLPF伝送特性、群遅 延特性を電子シミュレータでみました。 今号ではデジタル時代になって注目度 が上がったガウス、リニアフェーズ特性 をみます。

稿末に記した文献からそれぞれの特 性の正規化したC(コンデンサ:単位F ファラッド)、L(コイル:単位Hヘンリ)の値 を回路シミュレータのLTspiceでシミュ レートします。正規化した値なので、入出

力インピーダンス 1Ω、カットオフ周 波数(Fc)を1ラ ジアン/sec (0.159Hz)でシ ミュレートするこ とになります。図 1はバターワー ス特性、ガウス 特性6dB、リニ アフェーズ特性 0.5dBの伝送

特性と群遅延特性をシミュレータしたも のです。横軸は対数表示で10mHzか ら10Hz、カットオフ周波数(Fc)は1ラジ アン/sec(0.159Hz)です。縦軸左は 対数dBで振幅を表し、縦軸右は群遅 延特性で単位はs:秒です。ガウス特性 はフィルタの切れがバターワース特性よ り若干悪いがFc付近で群遅延特性は 良好でFcより高いほうに群遅延特性の あばれる部分を持ってきています。電子 回路シミュレータではじめて特性の違い が理解できました。リニアフェーズ特性 は群遅延特性が平坦に近く、Fcより高 いほうでも平坦です。そのためフィルタ の切れは甘くなっています。バターワー スの群遅延特性がずっと悪く見えるの が不思議な感じです。図2に回路図を示

します。CとLの配置は同じでそれぞれの 値が違っています。正規化表を図3に 再掲します。

10月号と併せてベッセル、バターワー ス、チェビシェフ、ガウス、リニアフェーズ 特性の伝送特性と群遅延特性をみてき ました。デジタル時代は群遅延特性が 良いものが好まれています。フィルタ設 計ソフトやフィルタ解説書でガウス、リニ アフェーズ特性を記したものは多くあり ません。引用文献では正規化表も含め て掲載されています。電子回路シミュ レータを使い、伝送特性と群遅延特性 が計算できるので特性の違いを容易に 理解できる時代になりました。

(参考・引用文献)

B. Williams, Fred J. Taylor; ELECTRONIC FILTER DESIGN HANDBOOK, McGraw-Hill

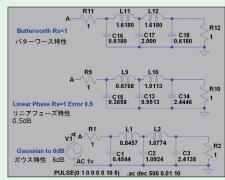


図2:LPF回路

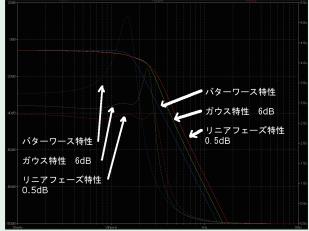


図1:伝送特性と群遅延

	Rs	С	L	С	L	С
ベッセル特性	1	0.1743	0.5072	0.8040	1.1110	2.2582
チェビシェフ特性	1	1.8068	1.3025	2.6914	1.3025	1.8068
バターワース特性	1	0.6180	1.6180	2.0000	1.6180	0.6180
リニアフェーズ特性	1	0.3658	0.6768	0.9513	1.0113	2.4446
ガウス特性	1	0.4544	0.8457	1.0924	1.0774	2.4138

図3:正規化表

ローパスフィルタ(LPF)の特性<1> ~月刊B-maga10月号より